Abstract
As an important secondary zinc resource, large-scale reserves of zinc oxide dust (ZOD) from a wide range of sources is of high comprehensive recycling value. Therefore, an experimental study on ultrasound-enhanced sulfuric acid leaching for zinc extraction from zinc oxide dust was carried out to investigate the effects of various factors such as ultrasonic power, reaction time, sulfuric acid concentration, and liquid–solid ratio on zinc leaching rate. The results show that the zinc leaching rate under ultrasound reached 91.16% at a temperature of 25 °C, ultrasonic power 500 W, sulfuric acid concentration 140 g/L, liquid–solid ratio 5:1, rotating speed 100 r/min, and leaching time 30 min. Compared with the conventional leaching method (leaching rate: 85.36%), the method under ultrasound increased the zinc leaching rate by 5.8%. In a kinetic analysis of the ultrasound-enhanced sulfuric acid leaching of zinc oxide dust, the initial apparent activation energy of the reaction was 6.90 kJ/mol, indicating that the ultrasound-enhanced leaching process was controlled by the mixed solid product layers. Furthermore, the leached residue was characterized by XRD and SEM-EDS, and the results show that, with ultrasonic waves, the encapsulated mineral particles were dissociated, and the dissolution of ZnO was enhanced. Mostly, the zinc in leached residue existed in the forms of ZnFe2O4, Zn2SiO4, and ZnS.
Subject
General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献