Development of Adjustable Parallel Helmholtz Acoustic Metamaterial for Broad Low-Frequency Sound Absorption Band

Author:

Yang Xiaocui,Yang Fei,Shen XinminORCID,Wang Enshuai,Zhang Xiaonan,Shen Cheng,Peng Wenqiang

Abstract

For the common difficulties of noise control in a low frequency region, an adjustable parallel Helmholtz acoustic metamaterial (APH-AM) was developed to gain broad sound absorption band by introducing multiple resonant chambers to enlarge the absorption bandwidth and tuning length of rear cavity for each chamber. Based on the coupling analysis of double resonators, the generation mechanism of broad sound absorption by adjusting the structural parameters was analyzed, which provided a foundation for the development of APH-AM with tunable chambers. Different from other optimization designs by theoretical modeling or finite element simulation, the adjustment of sound absorption performance for the proposed APH-AM could be directly conducted in transfer function tube measurement by changing the length of rear cavity for each chamber. According to optimization process of APH-AM, The target for all sound absorption coefficients above 0.9 was achieved in 602–1287 Hz with normal incidence and that for all sound absorption coefficients above 0.85 was obtained in 618–1482 Hz. The distributions of sound pressure for peak absorption frequency points were obtained in the finite element simulation, which could exhibit its sound absorption mechanism. Meanwhile, the sound absorption performance of the APH-AM with larger length of the aperture and that with smaller diameter of the aperture were discussed by finite element simulation, which could further show the potential of APH-AM in the low-frequency sound absorption. The proposed APH-AM could improve efficiency and accuracy in adjusting sound absorption performance purposefully, which would promote its practical application in low-frequency noise control.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3