The Mechanical and Energy Release Performance of THV-Based Reactive Materials

Author:

Guo Mengmeng,Wang Yanxin,Wang HaifuORCID,Xiao JianguangORCID

Abstract

A polymer of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride- (THV) based reactive materials (RMs) was designed to improve their density and energy release efficiency. The mechanical performances, fracture mechanisms, thermal behavior, energy release behavior, and reaction energy of four types of RMs (26.5% Al/73.5% PTFE, 5.29% Al/80% W/14.71% PTFE, 62% Hf/38% THV, 88% Hf/12% THV) were systematically researched by conducting compressive tests, scanning electron microscope (SEM), differential scanning calorimeter, thermogravimetric (DSC/TG) tests and ballistic experiments. The results show that the THV-based RMs have a unique strain softening effect, whereas the PTFE-based RMs have a remarkable strain strengthening effect, which is mainly caused by the different glass transition temperatures. Thermal analysis indicates that the THV-based RMs have more than one exothermic peak because of the complex component in THV. The energy release behavior of RMs is closely related to their mechanical properties, which could dominate the fragmentation behavior of materials. The introduction of tungsten (W) particles to PTFE RMs could not only enhance the density but also elevate the reaction threshold of RMs, whereas the reaction threshold of THV-based RMs is decreased when increasing Hf particles content. As such, under current conditions, the THV-based RMs (88% Hf/12% THV) with a high density of 7.83 g/cm3 are adapted to release a lot of energy in thin, confined spaces.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanxi Province

Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi

Publisher

MDPI AG

Subject

General Materials Science

Reference31 articles.

1. Investigation of Mechanism and Performance of Spaced Ceramic Target under Impact of 12.7 mm Armor Piercing Projectile;Eryong,2008

2. Research on Damage Mechanism of Light Armored Target by PELE;Shengcai,2010

3. Reactive Material Enhanced Munition Compositions and Projectiles Containing Same;Nielson;U.S. Patent,2005

4. Reactive Material Enhanced Projectiles and Related Methods;Nielson;U.S. Patent,2015

5. Improving the energy release characteristics of PTFE/Al by doping magnesium hydride

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial for the Special Issue “Materials under High Pressure”;Materials;2023-12-20

2. Features of Initiation and Combustion of Hf/PTFE Reactive Materials;International Journal of Self-Propagating High-Temperature Synthesis;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3