Abstract
In this work, polyacrylic acid-functionalized MCM-41 was synthesized, which was made to interact with calcium ions, in order to realize enhanced pH-responsive nanocarriers for sustained drug release. First, mesoporous silica nanoparticles (MSNs) were prepared by the sol-gel method. Afterward, a (3-trimethoxysilyl)propyl methacrylate (TMSPM) modified surface was prepared by using the post-grafting method, and then the polymerization of the acrylic acid was performed. After adding a calcium chloride solution, polyacrylic acid-functionalized MSNs with calcium-carboxyl ionic bonds in the polymeric layer, which can prevent the cargo from leaking out of the mesopore, were prepared. The structure and morphology of the modified nanoparticles (PAA-MSNs) were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), and N2 adsorption–desorption analysis, etc. The controlled release of guest molecules was studied by using 5-fluorouracil (5-FU). The drug molecule-incorporated nanoparticles showed different releasing rates under different pH conditions. It is considered that our current materials have the potential as pH-responsive nanocarriers in the field of medical treatment.
Funder
National Research Foundation of Korea
Korea Institute for Advancement of Technology
Subject
General Materials Science
Reference94 articles.
1. Environmentally responsive material to address human-system interaction in the automotive cockpit;Rehkopf;Smart Mater. Struct. Ind. Commer. Appl. Smart Struct. Technol.,2001
2. Advances in the smart materials applications in the aerospace industries
3. Shape memory polymers and their composites in aerospace applications: a review
4. Electrically Responsive Materials and Devices Directly Driven by the High Voltage of Triboelectric Nanogenerators
5. Switchable and Responsive Surfaces and Materials for Biomedical Applications;Zhang,2014
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献