Abstract
The coupled effect of the chloride attack environment and train load seriously affects the safety and durability of urban rail transit viaducts and dramatically reduces their service life. In this research, a corrosion-fatigue life prediction model of the prestressed concrete (PC) beam under the coupled effect of the chloride attack environment and train load was developed. This proposed model was illustrated by a 30 m-span PC U-shaped beam in an urban rail transit viaduct. The competitive relationship between concrete fatigue cracking time, non-prestressed reinforcement corrosion initiation time, and concrete corrosion-induced cracking time was discussed. The effects of train frequency, the chloride attack environment grade, and the environmental temperature and relative humidity were investigated on corrosion-fatigue life. Results indicate that train frequency, the chloride attack environment grade, and the environmental temperature can reduce the corrosion-fatigue life of a U-shaped beam by up to 30.0%, 50.7%, and 21.5%, respectively. A coupled chloride attack environment and train frequency can reduce the corrosion-fatigue life by up to 61.2%. Distinct from the environmental temperature, the change of relative humidity has little effect on the corrosion-fatigue life of the U-shaped beam.
Funder
Open Foundation of National Engineering Research Center of High-speed Railway Construction Technology
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献