Fractal Characteristic-Induced Optimization of the Fixed Abrasive Lapping Plate in Fabricating Bipolar Plate of Proton-Exchange Membrane Fuel Cells

Author:

Pan Guoqing,Wang Zhengwei,Wen Donghui

Abstract

Purpose: A bipolar plate with fractal-characterized microstructures can realize intelligent energy transmission and obtain a high efficiency of proton-exchange membrane fuel cells. In this paper, fixed abrasive lapping technology is proposed to fabricate a surface microstructure on a bipolar plate with fractal characteristics. Methodology: The kinematics of the fixed abrasive lapping process was developed and employed to numerically investigate the particle trajectories moving on the target surface by considering the different arraying forms of diamonds on the lapping plate. Findings: It was found from an analysis of both the uniformity and the fractal characteristics that the arraying form of diamonds on the lapping plate, with the distribution of latitude and longitude with an angle of 30° and a gap of concentric circles of 40 mm with a minimum radius of 70 mm and maximum radius of 190 mm, can be used to obtain the best uniformity and fractal characteristics in the fixed abrasive lapping of a bipolar plate. Conclusions: The distribution of the latitude and longitude of 40° and 30° considered in this study is expected to realize the best machining performance in the bipolar plate and present good cell performance.

Funder

Department of Education of Zhejiang Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3