A Comparative Study of Statistics-Based Landslide Susceptibility Models: A Case Study of the Region Affected by the Gorkha Earthquake in Nepal

Author:

Meena Sansar,Ghorbanzadeh Omid,Blaschke ThomasORCID

Abstract

As a result of the Gorkha earthquake in 2015, about 9000 people lost their lives and many more were injured. Most of these losses were caused by earthquake-induced landslides. Sustainable planning and decision-making are required to reduce the losses caused by earthquakes and related hazards. The use of remote sensing and geographic information systems (GIS) for landslide susceptibility mapping can help planning authorities to prepare for and mitigate the consequences of future hazards. In this study, we developed landslide susceptibility maps using GIS-based statistical models at the regional level in central Nepal. Our study area included the districts affected by landslides after the Gorkha earthquake and its aftershocks. We used the 23,439 landslide locations obtained from high-resolution satellite imagery to evaluate the differences in landslide susceptibility using analytical hierarchy process (AHP), frequency ratio (FR) and hybrid spatial multi-criteria evaluation (SMCE) models. The nine landslide conditioning factors of lithology, land cover, precipitation, slope, aspect, elevation, distance to roads, distance to drainage and distance to faults were used as the input data for the applied landslide susceptibility mapping (LSM) models. The spatial correlation of landslides and these factors were identified using GIS-based statistical models. We divided the inventory into data used for training the statistical models (70%) and data used for validation (30%). Receiver operating characteristics (ROC) and the relative landslide density index (R-index) were used to validate the results. The area under the curve (AUC) values obtained from the ROC approach for AHP, FR and hybrid SMCE were 0.902, 0.905 and 0.91, respectively. The index of relative landslide density, R-index, values in sample datasets of AHP, FR and hybrid SMCE maps were 53%, 58% and 59% for the very high hazard classes. The final susceptibility results will be beneficial for regional planning and sustainable hazard mitigation.

Funder

Austrian Science Fund

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3