Abstract
Mild steel continues to be the most extensively used construction material in several industries and constructions. However, corrosion of mild steel in aggressive environments is a major concern. Under the tremendously increasing demand for improving the coatings strategies because of the environmental concerns due to some of the traditional coatings, silane pre-treatments have been emerging as one of the effective solutions, among other strategies. Different approaches, such as adding particles of metal oxide (such as SiO2, ZrO2, Al2O3, TiO2 and CeO2), incorporating plant extracts and impregnating 2D materials into the coatings, have been employed for durable corrosion resistance, including for mitigating enhanced corrosion due to the presence of bacteria. This review discusses the critical mechanistic features of silane coatings such as the role of hydrolysis and condensation in the bonding of silanes with metal surfaces. The factors that influence the performance of the silane coatings for corrosion resistance of mild steel are discussed. In particular, this review provides insight into silane coatings for mitigating microbiologically influenced corrosion (MIC) of mild steel.
Subject
General Materials Science
Reference96 articles.
1. Plueddemann, E.P. General Concepts. Silane Coupling Agents, 1991.
2. Rajendran, S., Nguyen, T.A., Kakooei, S., Li, Y., and Yeganeh, M. Chapter 23—Nanoparticles Incorporated in Silane Sol-Gel Coatings. Corrosion Protection at the Nanoscale, 2020.
3. Packham, D.E. Silane adhesion promotors. Handbook of Adhesion, 2005.
4. Ebnesajjad, S. Chapter 12—Adhesion Promoters. Surface Treatment of Materials for Adhesive Bonding, 2014.
5. Seymour, B.R., and Deanin, R.D. History of Polymeric Composites, 1987.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献