Abstract
Dual adhesives are mainly used to increase the strength of single lap joints (SLJs) by reducing the stress concentration at its ends. However, they can also be used to design the characteristics of the joint so that its operation and failure occur in several stages. This paper presents the results of uniaxial tensile tests for dual-adhesive and triple-adhesive SLJs. The adherends were made of aluminum and glass fiber-reinforced polymer (GFRP) composite. For dual-adhesive SLJs, 10 epoxies and 1.6 mm thick double-sided adhesive tape were used. The stiffest (Epidian 53 (100 g) + “PAC” hardener (80 g)) and most elastic (Scotch-Weld 2216 B/A Translucent) joints were determined, which were then used in a triple-adhesive joint with the same double-sided adhesive tape. Circular holes of different diameters from 8 mm to 20 mm were made in the double-sided adhesive tape, which were filled with liquid epoxy adhesive by injection after the adherends were joined. By using the double-sided adhesive tape, the geometry of the epoxy joints was perfect, free of spews, and had a constant thickness. The effect of the spot epoxy joint diameters and the arrangement of stiff and elastic joints in the SLJs were analyzed using digital image correlation (DIC).
Funder
Polish Ministry of Science and Higher Education
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献