Thermal Properties and Flammability Characteristics of a Series of DGEBA-Based Thermosets Loaded with a Novel Bisphenol Containing DOPO and Phenylphosphonate Units

Author:

Hamciuc CorneliuORCID,Vlad-Bubulac TăchițăORCID,Serbezeanu DianaORCID,Macsim Ana-MariaORCID,Lisa GabrielaORCID,Anghel Ion,Şofran Ioana-Emilia

Abstract

Despite a recent sustained preoccupation for developing biobased epoxies with enhanced applicability, such products have not been widely accepted for industry because of their inferior characteristics compared to classic petroleum-based epoxy thermosets. Therefore, significant effort is being made to improve the flame retardance of the most commonly used epoxies, such as diglycidyl ether-based bisphenol A (DGEBA), bisphenol F (DGEBF), novalac epoxy, and others, while continuously avoiding the use of hazardous halogen-containing flame retardants. Herein, a phosphorus-containing bisphenol, bis(4-(((4-hydroxyphenyl)amino)(6-oxido-6H-dibenzo[c,e][1,2]oxaphosphinin-6-yl)methyl)phenyl) phenylphosphonate (BPH), was synthesized by reacting bis(4-formylphenyl)phenylphosphonate with 4-hydroxybenzaldehyde followed by the addition of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) to the resulting azomethine groups. Environmentally friendly epoxy-based polymer thermosets were prepared by using epoxy resin as polymer matrix and a mixture of BPH and 4,4′-diaminodiphenylsulfone (DDS) as hardeners. A hyperbranched phthalocyanine polymer (HPc) and BaTiO3 nanoparticles were incorporated into epoxy resin to improve the characteristics of the final products. The structure and morphology of epoxy thermosets were evaluated by infrared spectroscopy and scanning electron microscopy (SEM), while the flammability characteristics were evaluated by microscale combustion calorimetry. Thermal properties were determined by thermogravimetric analysis and differential scanning calorimetry. The surface morphology of the char residues obtained by pyrolysis was studied by SEM analysis.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3