Abstract
An in-depth understanding of the flow behaviors of materials deformed at high temperatures is of paramount significance. However, insufficient research on the nickel-based GH4698 alloy has resulted in inaccurate material flow prediction or even cracking in the practical billet opening of GH4698 large forgings. In this study, hot compressions were performed at 950–1150 °C and 0.001–3 s−1. Single-peaked strain-stress curves were obtained under various conditions, owing to dislocation motions in dynamic recrystallizations. The Arrhenius model was formulated to accurately describe the flow stress evolutions and the mean prediction error of the flow stress was 5.90%. Processing maps were constructed at various hot working conditions. It was found that the hot working ability of GH4698 markedly decreased under lower temperatures (950–1080 °C) and higher strain rates (0.1–3 s−1). Optimal thermal processing parameters were suggested. In sum, this study systematically investigated the flow behaviors and hot working ability of GH4698 in isothermal compressions.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献