STW 5 Herbal Preparation Modulates Wnt3a and Claudin 1 Gene Expression in Zebrafish IBS-like Model

Author:

Piccione Monica,Facchinello Nicola,Schrenk Sandra,Gasparella Marco,Pathak SurajitORCID,Ammar Ramy M.,Rabini Sabine,Dalla Valle LuisaORCID,Di Liddo RosaORCID

Abstract

Aim: Irritable bowel syndrome (IBS) is a functional bowel disorder characterized by chronic abdominal pain and stool irregularities. STW 5 has proven clinical efficacy in functional gastrointestinal disorders, including IBS, targeting pathways that suppress inflammation and protect the mucosa. Wnt signaling is known to modulate NF-kβ-dependent inflammatory cytokine production. This sparked the idea of evaluating the impact of STW 5 on the expression of inflammatory-response and Wnt/β catenin-target genes in an IBS-like model. Main methods: We used zebrafish and dextran sodium sulfate (DSS) treatment to model IBS-like conditions in vivo and in vitro and examined the effects of subsequent STW 5 treatment on the intestines of DSS-treated fish and primary cultured intestinal and neuronal cells. Gross gut anatomy, histology, and the expression of Wnt-signaling and cytokine genes were analyzed in treated animals and/or cells, and in controls. Key findings: DSS treatment up-regulated the expression of interleukin-8, tumor necrosis factor-α, wnt3a, and claudin-1 in explanted zebrafish gut. Subsequent STW 5 treatment abolished both the macroscopic signs of gut inflammation, DSS-induced mucosecretory phenotype, and normalized the DSS-induced upregulated expression of il10 and Wnt signaling genes, such as wnt3a and cldn1 in explanted zebrafish gut. Under inflammatory conditions, STW 5 downregulated the expression of the pro-inflammatory cytokine genes il1β, il6, il8, and tnfα while it upregulated the expression of the anti-inflammatory genes il10 and wnt3a in enteric neuronal cells in vitro. Significance: Wnt signaling could be a novel target for the anti-inflammatory and intestinal permeability-restoring effects of STW 5, possibly explaining its clinical efficacy in IBS.

Funder

Bayer Consumer Health, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Reference78 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3