Chemical Characterization and Biological Evaluation of New Cobalt(II) Complexes with Bioactive Ligands, 2-Picolinehydroxamic Acid and Reduced Schiff Base N-(2-Hydroxybenzyl)alanine, in Terms of DNA Binding and Antimicrobial Activity

Author:

Woźniczka MagdalenaORCID,Lichawska Marta,Sutradhar ManasORCID,Chmiela Magdalena,Gonciarz WeronikaORCID,Pająk Marek

Abstract

Five new heteroligand cobalt(II) complexes with 2-picolinehydroxamic acid and reduced Schiff base, N-(2-hydroxybenzyl)alanine, were formed in an aqueous solution over a wide pH range. The coordination properties of ligands towards the metal ion were determined using a pH-metric method, and then the speciation model was confirmed by UV–Vis studies. A stacking interaction between the Schiff base phenol ring and the 2-picolinehydroxamic acid pyridine ring was found to improve the stability of the heteroligand species, indicating more effective coordination in mixed-ligand complexes than in their respective binary systems. The antimicrobial properties of heteroligand complexes were determined against Gram-negative and Gram-positive bacteria, as well as fungal strains. The formulation demonstrated the highest bacteriostatic and bactericidal activity (3.65 mM) against two strains of Gram-negative Helicobacter pylori bacteria and towards Candida albicans and Candida glabrata; this is important due to the potential co-existence of these microorganisms in the gastric milieu and their role in the development of gastritis. The binary complexes in the cobalt(II)—2-picolinehydroxamic acid system and 2-picolinehydroxamic acid were not cytotoxic against L929 mouse fibroblasts, neither freshly prepared solutions or after two weeks’ storage. By comparison, the heteroligand complexes within the range 0.91–3.65 mM diminished the metabolic activity of L929 cells, which was correlated with increased damage to cell nuclei. The concentration of the heteroligand species increased over time; therefore, the complexes stored for two weeks exhibited stronger anticellular toxicity than the freshly prepared samples. The complexes formed in an aqueous solution under physiological pH effectively bound to calf thymus DNA in an intercalative manner. This DNA-binding ability may underpin the antimicrobial/antifungal activity of the heteroligand complexes and their ability to downregulate the growth of eukaryotic cells.

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3