Abstract
The consistency of the two-phase mode responses is essential to ensure the mechanical performance and stability of traveling-wave ultrasonic motors. Due to the asymmetry of the stator, inevitable manufacturing errors, or imbalance of the excitation voltages, the amplitudes of the two-phase standing waves cannot be exactly the same, resulting in unstable operating of USM. To improve the stability of the motor and decrease the velocity fluctuation, a closed-loop velocity control scheme considering two-phase consistency compensation based on the vibration amplitude of the stator is proposed. This scheme is implemented under the framework of the stator vibration amplitude-based velocity control and parallel resonance frequency tracking (VCBVF). Based on the relationship between the velocity and stator vibration amplitude (SVA), two-phase excitation signals are adjusted individually and simultaneously. Compared with the single-phase feedback VCBVF control scheme, experimental results show that the proposed scheme can reduce the overshoot from 17.50% to 6.90% and velocity fluctuations from 7.69 rpm to 2.40 rpm, under different load torques. The proposed scheme can compensate for the two-phase electrical inconsistency and improve the velocity stability and output power of motor operation under various conditions.
Funder
National Natural Science Foundation of China
Subject
Control and Optimization,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献