Mechanism of Thrust–Power Ratio Improvement Using Plasma Actuator with Discretized Encapsulated Electrodes

Author:

Shima YoshikiORCID,Imai RyuyaORCID,Ishikawa HitoshiORCID,Segawa TakehikoORCID

Abstract

Plasma actuators (PA) can be utilized as fluid control devices without moving parts, but further improvement in drive efficiency is necessary. Herein, string-type PAs with up to 12 insulated conductive wires were evaluated to replace sheet-type PAs having a single encapsulated electrode. The thrust–power ratio of string-type PAs with eight or more wires is nine times that of a single-wire PA. This is due to the substantial increase in the width of the encapsulated electrode and the discrete arrangement of conductors in the streamwise direction. To determine the factors influencing the performance of PAs with discrete encapsulated electrodes, sheet-type PAs with and without discretized encapsulated electrodes and with the same configuration as string-type PAs were characterized. The measurement results revealed that no significant difference exists in the plasma extension length (LDBD) between sheet-type PAs without and with discretization under the same applied voltage, but 25% and 45% decreases in the thrust and power consumption, respectively, were observed compared to those of string-type PAs. The discretization of the encapsulated electrodes in the sheet-type plasma actuator increased the thrust–power ratio by 30%. Efficient non-mechanical fluid control using dielectric barrier discharge is therefore possible with string-type PAs with discrete electrodes.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference37 articles.

1. Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma;Roth;Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit,1998

2. Application of weakly-ionized plasmas as wing flow-control devices;Corke;Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit,2002

3. Dielectric Barrier Discharge Plasma Actuators for Flow Control

4. Optimization of Dielectric Barrier Discharge Plasma Actuators for Active Aerodynamic Flow Control

5. On the mechanical efficiency of dielectric barrier discharge plasma actuators

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3