Enhancement of Shock Absorption Using Hybrid SMA-MRF Damper by Complementary Operation

Author:

Jacob Kiran,Tan Aditya SuryadiORCID,Sattel Thomas,Kohl ManfredORCID

Abstract

A hybrid damper concept is presented here using a combination of a Magnetorheological (MR) Fluid (MRF) and Shape Memory Alloy (SMA)-based energy dissipation. A demonstration is performed utilizing the shear operating mode of the MRF and the one-way effect of the SMA. The damping performance of different MRF-SMA configurations is investigated and the corresponding energy consumption is evaluated. We demonstrate that the operation of MRF and SMA dampers complement each other, compensating for each other’s weaknesses. In particular, the slow response from the MR damper is compensated by passive SMA damping using the pseudoplastic effect of martensite reorientation, which can dissipate a significant amount of shock energy at the beginning of the shock occurrence. The MR damper compensates for the incapability of the SMA to dampen subsequent vibrations as long as the magnetic field is applied. The presented hybrid SMA-MR damper demonstrates superior performance compared to individual dampers, allowing for up to five-fold reduction in energy consumption of the MR damper alone and thereby opening up the possibility of reducing the construction volume of the MR damper.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference16 articles.

1. The Shock Absorber Handbook;Dixon,2008

2. Experimental Study and Design on Automobile Suspension Made of Magneto-Rheological Damper

3. Development of image stabilization system for remote operation of walking robots;Kurazume;Proceedings of the 2000 ICRA, Millennium Conference, IEEE International Conference on Robotics and Automation, Symposia Proceedings (Cat. No. 00CH37065),2000

4. SMA actuator for optical image stabilization;Kazi;Proceedings of the ACTUATOR 2018, 16th International Conference on New Actuators,2018

5. Damping and Transfer Control System With Parallel Linkage Mechanism-Based Active Vibration Reducer for Omnidirectional Wheeled Robots

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3