Fiber Bragg Grating Wavelength Drift in Long-Term High Temperature Annealing

Author:

Grobnic Dan,Hnatovsky Cyril,Dedyulin SergeyORCID,Walker Robert B.,Ding Huimin,Mihailov Stephen J.ORCID

Abstract

High-temperature-resistant fiber Bragg gratings (FBGs) are the main competitors to thermocouples as sensors in applications for high temperature environments defined as being in the 600–1200 °C temperature range. Due to their small size, capacity to be multiplexed into high density distributed sensor arrays and survivability in extreme ambient temperatures, they could provide the essential sensing support that is needed in high temperature processes. While capable of providing reliable sensing information in the short term, their long-term functionality is affected by the drift of the characteristic Bragg wavelength or resonance that is used to derive the temperature. A number of physical processes have been proposed as the cause of the high temperature wavelength drift but there is yet no credible description of this process. In this paper we review the literature related to the long-term wavelength drift of FBGs at high temperature and provide our recent results of more than 4000 h of high temperature testing in the 900–1000 °C range. We identify the major components of the high temperature wavelength drift and we propose mechanisms that could be causing them.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference75 articles.

1. Traceable Temperatures;Nicholas,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3