De-Anonymizing Users across Rating Datasets via Record Linkage and Quasi-Identifier Attacks

Author:

Torres Nicolás1ORCID,Olivares Patricio1ORCID

Affiliation:

1. Departamento de Electrónica, Universidad Técnica Federico Santa María, Santiago 8940897, Chile

Abstract

The widespread availability of pseudonymized user datasets has enabled personalized recommendation systems. However, recent studies have shown that users can be de-anonymized by exploiting the uniqueness of their data patterns, raising significant privacy concerns. This paper presents a novel approach that tackles the challenging task of linking user identities across multiple rating datasets from diverse domains, such as movies, books, and music, by leveraging the consistency of users’ rating patterns as high-dimensional quasi-identifiers. The proposed method combines probabilistic record linkage techniques with quasi-identifier attacks, employing the Fellegi–Sunter model to compute the likelihood of two records referring to the same user based on the similarity of their rating vectors. Through extensive experiments on three publicly available rating datasets, we demonstrate the effectiveness of the proposed approach in achieving high precision and recall in cross-dataset de-anonymization tasks, outperforming existing techniques, with F1-scores ranging from 0.72 to 0.79 for pairwise de-anonymization tasks. The novelty of this research lies in the unique integration of record linkage techniques with quasi-identifier attacks, enabling the effective exploitation of the uniqueness of rating patterns as high-dimensional quasi-identifiers to link user identities across diverse datasets, addressing a limitation of existing methodologies. We thoroughly investigate the impact of various factors, including similarity metrics, dataset combinations, data sparsity, and user demographics, on the de-anonymization performance. This work highlights the potential privacy risks associated with the release of anonymized user data across diverse contexts and underscores the critical need for stronger anonymization techniques and tailored privacy-preserving mechanisms for rating datasets and recommender systems.

Funder

Universidad Tecnica Federico Santa Maria

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3