CVs Classification Using Neural Network Approaches Combined with BERT and Gensim: CVs of Moroccan Engineering Students

Author:

Qostal Aniss1ORCID,Moumen Aniss2ORCID,Lakhrissi Younes1ORCID

Affiliation:

1. Intelligent Systems, Georesources and Renewable Energies Laboratory (SIGER IN FRENCH), Sidi Mohamed Ben Abdellah University, FST, Fez 30050, Morocco

2. Laboratory of Engineering Sciences, National School of Applied Sciences, Ibn Tofaïl University, Kenitra 14000, Morocco

Abstract

Deep learning (DL)-oriented document processing is widely used in different fields for extraction, recognition, and classification processes from raw corpus of data. The article examines the application of deep learning approaches, based on different neural network methods, including Gated Recurrent Unit (GRU), long short-term memory (LSTM), and convolutional neural networks (CNNs). The compared models were combined with two different word embedding techniques, namely: Bidirectional Encoder Representations from Transformers (BERT) and Gensim Word2Vec. The models are designed to evaluate the performance of architectures based on neural network techniques for the classification of CVs of Moroccan engineering students at ENSAK (National School of Applied Sciences of Kenitra, Ibn Tofail University). The used dataset included CVs collected from engineering students at ENSAK in 2023 for a project on the employability of Moroccan engineers in which new approaches were applied, especially machine learning, deep learning, and big data. Accordingly, 867 resumes were collected from five specialties of study (Electrical Engineering (ELE), Networks and Systems Telecommunications (NST), Computer Engineering (CE), Automotive Mechatronics Engineering (AutoMec), Industrial Engineering (Indus)). The results showed that the proposed models based on the BERT embedding approach had more accuracy compared to models based on the Gensim Word2Vec embedding approach. Accordingly, the CNN-GRU/BERT model achieved slightly better accuracy with 0.9351 compared to other hybrid models. On the other hand, single learning models also have good metrics, especially based on BERT embedding architectures, where CNN has the best accuracy with 0.9188.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3