Author:
Liu Junlin,Liu Peng,Feng Fenglin,Zhang Junxuan,Li Fulin,Wang Mianzhi,Sun Yongxue
Abstract
The increase in antimicrobial resistance is a threat to both human and animal health. The transfer of antibiotic resistance genes (ARG) via plasmids has been studied in detail whereas the contribution of bacteriophage-mediated ARG transmission is relatively little explored. We isolated and characterized two T7-like lytic bacteriophages that infected multidrug-resistant Escherichia coli hosts. The morphology and genomic analysis indicated that both phage HZP2 and HZ2R8 were evolutionarily related and their genomes did not encode ARGs. However, ARG-like raw reads were detected in offspring sequencing data with a different abundance level implying that potential ARG packaging had occurred. PCR results demonstrated that six fragments of genes (qnrS, cmlA, tetM, blaTEM, sul3, mcr-1) were potentially packaged by phage HZP2 and four (qnrS, cmlA, blaTEM, mcr-1) by phage HZ2R8. Further quantitative results showed that ARG abundance hierarchies were similar. The gene blaTEM was the most abundant (up to 1.38 × 107 copies/mL) whereas cmlA and qnrS were the least. Moreover, the clinically important mcr-1 gene was the second most abundant ARG indicating a possibility for spread through generalized transduction. Together, our results indicated that these structurally similar phage possessed similar characteristics and potential packaging during phage-host interaction displayed an ARG preference rather than occurring randomly.
Subject
Virology,Infectious Diseases
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献