Satellite Imageries and Field Data of Macrophytes Reveal a Regime Shift of a Tropical Lake (Lake Ziway, Ethiopia)

Author:

Damtew Yohannes TeferaORCID,Verbeiren BoudORCID,Awoke AymereORCID,Triest LudwigORCID

Abstract

Lake Ziway is one of the largest freshwater lakes located in the central Ethiopian rift valley. The lake shoreline is dominated by macrophytes which play an important role in immobilizing run-off pollution, stabilize sediments and support biodiversity. Monitoring the spatio-temporal changes of great lakes requires standardized methods. The aim of this study was to assess the current and long-term trends of macrophyte distribution, surface water area and the water level of Lake Ziway using remote sensing images from 1986 to 2016 with additional hydro-meteorological data. A supervised image classification with classification enhancement using Normalized Difference Aquatic Vegetation Index (NDAVI) and Normalized Difference Vegetation Index (NDVI) was applied. The classification based on NDAVI revealed eight target classes which were identified with an overall producer’s accuracy of 79.6%. Contemporary open water and macrophyte fringes occupied most of the study area with a total area of 407.4 km2 and 60.1 km2, respectively. The findings also revealed a regime shift in the mean water level of the lake and a decline in macrophyte distribution. The long-term water surface area of Lake Ziway also decreased between 1986 and 2016. The changes in water level could be explained by climate variability in the region and strong anthropogenic disturbance. A decline in water level was also associated with lowered surface water area, lakeward retreated macrophyte fringes and enhanced landward encroachment of mudflats, and resulted in a succession of macrophytes with semi-terrestrial vegetations.

Funder

A financial support for the field work (BAS 42) was provided by Plant Biology and Nature Management laboratory (APNA) of Vrije Universiteit Brussels.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3