Genetic Diversity and Population Divergence of a Rare, Endemic Grass (Elymus breviaristatus) in the Southeastern Qinghai-Tibetan Plateau

Author:

Yu QingqingORCID,Liu Qian,Xiong Yi,Xiong Yanli,Dong Zhixiao,Yang Jian,Liu Wei,Ma Xiao,Bai Shiqie

Abstract

Elymus breviaristatus is a grass species only distributed in the southeast of Qinghai-Tibetan Plateau (QTP), which has suffered from serious habitat fragmentation. Therefore, understanding patterns of genetic diversity within and among natural E. breviaristatus populations could provide insight for future conservation strategies. In this study, sequence-related amplified polymorphism markers were employed to investigate the genetic diversity and hierarchical structure of seven E. breviaristatus populations from QTP, China. Multiple measures of genetic diversity indicated that there is low to moderate genetic variation within E. breviaristatus populations, consistent with its presumed mating system. In spite of its rarity, E. breviaristatus presented high genetic diversity that was equivalent to or even higher than that of widespread species. Bayesian clustering approaches, along with clustering analysis and principal coordinate analysis partitioned the studied populations of E. breviaristatus into five genetic clusters. Differentiation coefficients (Fst, GST, etc.) and AMOVA analysis revealed considerable genetic divergence among different populations. BARRIER analyses indicated that there were two potential barriers to gene flow among the E. breviaristatus populations. Despite these patterns of differentiation, genetic distances between populations were independent of geographic distances (r = 0.2197, p = 0.2534), indicating little isolation by distance. Moreover, despite detecting a common outlier by two methods, bioclimatic factors (altitude, annual mean temperature, and annual mean precipitation) were not related to diversity parameters, indicating little evidence for isolation caused by the environment. These patterns of diversity within and between populations are used to propose a conservation strategy for E. breviaristatus.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3