Forecasting Wastewater Temperature Based on Artificial Neural Network (ANN) Technique and Monte Carlo Sensitivity Analysis

Author:

Golzar FarzinORCID,Nilsson David,Martin ViktoriaORCID

Abstract

Wastewater contains considerable amounts of thermal energy. Heat recovery from wastewater in buildings could supply cities with an additional source of renewable energy. However, variations in wastewater temperature influence the performance of the wastewater treatment plant. Thus, the treatment is negatively affected by heat recovery upstream of the plant. Therefore, it is necessary to develop more accurate models of the wastewater temperature variations. In this work, a computational model based on artificial neural network (ANN) is proposed to calculate wastewater treatment plant influent temperature concerning ambient temperature, building effluent temperature and flowrate, stormwater flowrate, infiltration flowrate, the hour of day, and the day of year. Historical data related to the Stockholm wastewater system are implemented in MATLAB software to drive the model. The comparison of calculated and observed data indicated a negligible error. The main advantage of this ANN model is that it only uses historical data commonly recorded, without any requirements of field measurements for intricate heat transfer models. Moreover, Monte Carlo sensitivity analysis determined the most influential parameters during different seasons of the year. Finally, it was shown that installing heat exchangers in 40% of buildings would reduce 203 GWh year−1 heat loss in the sewage network. However, heat demand in WWTP would be increased by 0.71 GWh year−1, and the district heating company would recover 176 GWh year−1 less heat from treated water.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference74 articles.

1. The Paris Agreementhttps://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement

2. Sustainable Development Goalshttps://www.un.org/sustainabledevelopment/sustainable-development-goals/

3. 2030 Climate & Energy Frameworkhttps://ec.europa.eu/clima/policies/strategies/2030_en#tab-0-0

4. Next Phase of the European Climate Change Programme: Analysis of Member States Actions to Implement the Effort Sharing Decision and Options for Further Community;Forster,2012

5. Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiencyhttp://data.europa.eu/eli/dir/2018/844/oj

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3