The Influence of Structural Parameters on the Ultimate Strength Capacity of a Designed Vertical Axis Turbine Blade for Ocean Current Power Generators

Author:

Rasgianti 12,Mukhtasor 1,Satrio Dendy1ORCID

Affiliation:

1. Department of Ocean Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

2. PT PLN (Persero) Research Institute, Jakarta 12760, Indonesia

Abstract

An ocean current power generator is a power plant that uses kinetic energy from ocean currents to generate electricity. Considering that the blade is the component that receives the biggest load from seawater currents, its structural design should be strong enough to sustain the applied load. Therefore, this research seeks a suitable design and material for turbine blades using the finite element method (FEM). A NACA 0021 blade with a total length of 3600 mm is used for the base geometry. A parametric study was conducted by varying the spacing between the supports, the pitch angle, the material, and the frame model. Considering a high load, the suitable amount of space between the stiffeners was 2200 mm. It was found that a pitch angle variation between −20° and +20° did not significantly affect the strength of the blade structure. The frame geometry variation caused the rigidity and cross-section area of the blade to differ. Therefore, web-shaped or bar-shaped frames are preferable because they have optimal maximum load-to-weight ratios. The material variation analysis resulted in CFRP material being chosen because it had a high maximum load/weight ratio and a high maximum stress.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3