Analysis of the Use of Energy Storage in the Form of Concrete Slabs as a Method for Sustainable Energy Management in a System with Active Thermal Insulation and Solar Collectors

Author:

Król Barbara1

Affiliation:

1. Chair of Chemical and Process Engineering, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Str, 31-155 Cracow, Poland

Abstract

One effective approach to reducing the energy required for heating buildings is the use of active thermal insulation (ATI). This method involves delivering low-temperature heat to the exterior walls through a network of pipes carrying water. For ATI to be cost-effective, the energy supply must be affordable and is typically derived from geothermal or solar sources. Solar energy, in particular, requires thermal energy storage (TES) to manage the gap between summer and the heating season. A building that integrates various renewable energy systems and heating/cooling technologies should be managed efficiently and sustainably. The proper integration of these systems with smart management strategies can significantly lower a building’s carbon footprint and operational costs. This study analyzes the use of concrete slabs as a method for sustainable energy management in a system incorporating active thermal insulation and solar collectors. Using ambient temperature and solar radiation data specific to Cracow, Poland, the simulations evaluate the feasibility of employing a concrete slab positioned beneath the building as a thermal storage tank. The results reveal some drawbacks of using concrete slabs, including high temperatures that negatively affect system efficiency. Increased temperatures lead to higher heat losses, and during summer, inadequate insulation can cause additional heat leakage into the building. The findings suggest that water may be a more effective alternative for thermal energy storage.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3