Design and Evaluation of the Extended FBS Model Based Gaze-Control Power Wheelchair for Individuals Facing Manual Control Challenges

Author:

Zhang Xiaochen12ORCID,Li Jiazhen1,Jin Lingling1,Zhao Jie1,Huang Qianbo1,Song Ziyang1,Liu Xinyu1,Luh Ding-Bang12

Affiliation:

1. Department of Industrial Design, Guangdong University of Technology, Guangzhou 510090, China

2. Guangdong International Center of Advanced Design, Guangdong University of Technology, Guangzhou 510090, China

Abstract

This study addresses the challenges faced by individuals with upper limb disadvantages in operating power wheelchair joysticks by utilizing the extended Function–Behavior–Structure (FBS) model to identify design requirements for an alternative wheelchair control system. A gaze-controlled wheelchair system is proposed based on design requirements from the extended FBS model and prioritized using the MosCow method. This innovative system relies on the user’s natural gaze and comprises three levels: perception, decision making, and execution. The perception layer senses and acquires information from the environment, including user eye movements and driving context. The decision-making layer processes this information to determine the user’s intended direction, while the execution layer controls the wheelchair’s movement accordingly. The system’s effectiveness was validated through indoor field testing, with an average driving drift of less than 20 cm for participates. Additionally, the user experience scale revealed overall positive user experiences and perceptions of the system’s usability, ease of use, and satisfaction.

Funder

2021 MOE of PRC Industry-University Collaborative Education Program

Humanity and Social Science Youth Foundation of the Ministry of Education of China

Guangzhou Science and Technology Planning Project

Humanity Design and Engineering Research Team

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3