A Reliable Low-Latency Multipath Routing Algorithm for Urban Rail Transit Ad Hoc Networks

Author:

Suo Lei1,Liu Liu1ORCID,Su Zhaoyang1,Cai Shiyuan1,Han Zijie1,Han Haitao2,Bao Feng2

Affiliation:

1. School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China

2. Traffic Control Technology Co., Ltd., Beijing 100071, China

Abstract

With the advancement of urban rail transit towards intelligence, the demand for urban rail transit communication has increased significantly, but the traditional urban rail transit vehicle–ground communication system has been unable to meet the future vehicle–ground communication requirements. To improve the performance of vehicle–ground communication, the paper proposes a reliable low-latency multipath routing (RLLMR) algorithm for urban rail transit ad hoc networks. First, RLLMR combines the characteristics of urban rail transit ad hoc networks and uses node location information to configure a proactive multipath to reduce route discovery delay. Second, the number of transmission paths is adaptively adjusted according to the quality of service (QoS) requirements for vehicle–ground communication, and then the optimal path is selected based on the link cost function to improve transmission quality. Third, in order to enhance the reliability of communication, a routing maintenance scheme has been added, and the static node-based local repair scheme is used in routing maintenance to reduce the maintenance cost and time. The simulation results show that compared with traditional AODV and AOMDV protocols, the proposed RLLMR algorithm has good performance in improving latency and is slightly inferior to the AOMDV protocol in improving reliability. However, overall, the throughput of the RLLMR algorithm is better than that of the AOMDV.

Funder

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3