Short-Term Power Forecasting Framework for Microgrids Using Combined Baseline and Regression Models

Author:

Parejo AntonioORCID,Bracco StefanoORCID,Personal EnriqueORCID,Larios Diego FranciscoORCID,Delfino Federico,León CarlosORCID

Abstract

Short-term electric power forecasting is a tool of great interest for power systems, where the presence of renewable and distributed generation sources is constantly growing. Specifically, this type of forecasting is essential for energy management systems in buildings, industries and microgrids for optimizing the operation of their distributed energy resources under different criteria based on their expected daily energy balance (the consumption–generation relationship). Under this situation, this paper proposes a complete framework for the short-term multistep forecasting of electric power consumption and generation in smart grids and microgrids. One advantage of the proposed framework is its capability of evaluating numerous combinations of inputs, making it possible to identify the best technique and the best set of inputs in each case. Therefore, even in cases with insufficient input information, the framework can always provide good forecasting results. Particularly, in this paper, the developed framework is used to compare a whole set of rule-based and machine learning techniques (artificial neural networks and random forests) to perform day-ahead forecasting. Moreover, the paper presents and a new approach consisting of the use of baseline models as inputs for machine learning models, and compares it with others. Our results show that this approach can significantly improve upon the compared techniques, achieving an accuracy improvement of up to 62% over that of a persistence model, which is the best of the compared algorithms across all application cases. These results are obtained from the application of the proposed methodology to forecasting five different load and generation power variables for the Savona Campus at the University of Genova in Italy.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3