Modified Contrast-Detail Phantom for Determination of the CT Scanners Abilities for Low-Contrast Detection

Author:

Geso Moshi,Alghamdi Salem Saeed,Tajaldeen AbdulrahmanORCID,Aljondi Rowa,Alghamdi Hind,Zailae Ali,Mattar Essam H.,Tamam Nissren,Aljehani Abdullah,Omer HibaORCID,Sulieman AbdelmoneimORCID

Abstract

Computerised tomography (CT) continues to be a corner stone medical and radiologic imaging modalities in radiology and radiotherapy departments. Its importance lies in its efficiency in low contrast detectability (LCD). The assessment of such capabilities requires rigorous image quality analysis using special designed phantoms with different densities as well as variation in atomic mass numbers (A) of the material. Absence of such ranges of densities and atomic mass numbers, limits the dynamic range of assessment. An example is Catphan phantom which represents only three subject contrast levels 0.3, 0.5 and 1 per cent. This project aims to present a phantom with extended range of available subject contrast to include very low-level values and to increase its dynamic scale. With this design, a relatively large number of different contrast objects (holes) can be presented for imaging by a CT scanner to assess its LCD ability. We shall thus introduce another LCD phantom to complement the existing ones, such as Catphan. The cylindrical phantom is constructed using Poly (methyl methacrylate) (PMMA), with craters (holes) having dimensions that gradually increase from 1.0 to 12.5 mm penetrated in configuration that extend from the centre to the corner. Each line of the drilled holes in the phantom is filled with contrast material of specific concentrations. As opposed to the phantom of low detail contrast used in planar imaging, the iodine (contrast material) in this phantom replaces the depth of the phantom holes. The iodine could be reduced to 0.2 l milli-Molar (mM) and can be varied for the next line of holes by a small increment depending on the required level of contrast detectability assessment required.

Funder

Princess Nourah Bint Abdulrahman University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3