A Measurement-Based Message-Level Timing Prediction Approach for Data-Dependent SDFGs on Tile-Based Heterogeneous MPSoCs

Author:

Stemmer RalfORCID,Vu Hai-DangORCID,Le Nours SébastienORCID,Grüttner KimORCID,Pillement SébastienORCID,Nebel Wolfgang

Abstract

Fast yet accurate performance and timing prediction of complex parallel data flow applications on multi-processor systems remains a very difficult discipline. The reason for it comes from the complexity of the data flow applications w.r.t. data dependent execution paths and the hardware platform with shared resources, like buses and memories. This combination may lead to complex timing interferences that are difficult to express in pure analytical or classical simulation-based approaches. In this work, we propose the combination of timing measurement and statistical simulation models for probabilistic timing and performance prediction of Synchronous Data Flow (SDF) applications on MPSoCs with shared memories. We exploit the separation of computation and communication in our SDF model of computation to set-up simulation-based performance prediction models following different abstraction approaches. We especially propose a message-level communication model driven by a data-dependent probabilistic execution phase timing model. We compare our work against measurement on two case-studies from the computer vision domain: a Sobel filter and a JPEG decoder. We show that the accuracy and execution time of our modeling and evaluation framework outperforms existing approaches and is suitable for a fast yet accurate design space exploration.

Funder

Deutscher Akademischer Austauschdienst

Campus France

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3