Removal of Pharmaceuticals from Water by Adsorption and Advanced Oxidation Processes: State of the Art and Trends

Author:

Mansouri Fatma,Chouchene Khawla,Roche NicolasORCID,Ksibi Mohamed

Abstract

Pharmaceutical products have become a necessary part of life. Several studies have demonstrated that indirect exposure of humans to pharmaceuticals through the water could cause negative effects. Raw sewage and wastewater effluents are the major sources of pharmaceuticals found in surface waters and drinking water. Therefore, it is important to consider and characterize the efficiency of pharmaceutical removal during wastewater and drinking-water treatment processes. Various treatment options have been investigated for the removal/reduction of drugs (e.g., antibiotics, NSAIDs, analgesics) using conventional or biological treatments, such as activated sludge processes or bio-filtration, respectively. The efficiency of these processes ranges from 20–90%. Comparatively, advanced wastewater treatment processes, such as reverse osmosis, ozonation and advanced oxidation technologies, can achieve higher removal rates for drugs. Pharmaceuticals and their metabolites undergo natural attenuation by adsorption and solar oxidation. Therefore, pharmaceuticals in water sources even at trace concentrations would have undergone removal through biological processes and, if applicable, combined adsorption and photocatalytic degradation wastewater treatment processes. This review provides an overview of the conventional and advanced technologies for the removal of pharmaceutical compounds from water sources. It also sheds light on the key points behind adsorption and photocatalysis.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3