Deep Learning for Information Triage on Twitter

Author:

Ptaszynski MichalORCID,Masui Fumito,Fukushima Yuuto,Oikawa Yuuto,Hayakawa Hiroshi,Miyamori YasunoriORCID,Takahashi Kiyoshi,Kawajiri Shunzo

Abstract

In this paper, we present a Deep Learning-based system for the support of information triaging on Twitter during emergency situations, such as disasters, or other influential events, such as political elections. The system is based on the assumption that a different type of information is required right after the event and some time after the event occurs. In a preliminary study, we analyze the language behavior of Twitter users during two kinds of influential events, namely, natural disasters and political elections. In the study, we analyze the credibility of information included by users in tweets in the above-mentioned situations, by classifying the information into two kinds: Primary Information (first-hand reports) and Secondary Information (second-hand reports, retweets, etc.). We also perform sentiment analysis of the data to check user attitudes toward the occurring events. Next, we present the structure of the system and compare a number of classifiers, including the proposed one based on Convolutional Neural Networks. Finally, we validate the system by performing an in-depth analysis of information obtained after a number of additional events, including an eruption of a Japanese volcano Ontake on 27 September 2014, as well as heavy rains and typhoons that occurred in 2020. We confirm that the methods works sufficiently well even when trained on data from nearly 10 years ago, which strongly suggests that the model is well-generalized and sufficiently grasps important aspects of each type of classified information.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. 2007. Problems for Collaborative Filtering: Privacy, Shilling Attack, and Variability of Users’ Ratings [in Japanese];Kamishima;IPSJ Mag.,2007

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3