Degradation of Brominated Organic Compounds (Flame Retardants) by a Four-Strain Consortium Isolated from Contaminated Groundwater

Author:

Balaban Noa,Gelman FainaORCID,Taylor Alicia A.,Walker Sharon L.ORCID,Bernstein AnatORCID,Ronen ZeevORCID

Abstract

Biodegradation of pollutants in the environment is directly affected by microbial communities and pollutant mixture at the site. Lab experiments using bacterial consortia and substrate mixtures are required to increase our understanding of these processes in the environment. One of the deficiencies of working with environmental cultures is the inability to culture and identify the active strains while knowing they are representative of the original environment. In the present study, we tested the aerobic microbial degradation of two brominated flame retardants, tribromo-neopentyl alcohol (TBNPA) and dibromo neopentyl glycol (DBNPG), by an assembled bacterial consortium of four strains. The four strains were isolated and plate-cultured from a consortium enriched from the impacted groundwater underlying the Neot Hovav industrial area (Negev, Israel), in which TBNPA and DBNPG are abundant pollutants. Total degradation (3–7 days) occurred only when the four-strain consortium was incubated together (25 °C; pH −7.2) with an additional carbon source, as both compounds were not utilized as such. Bacterial growth was found to be the limiting factor. A dual carbon–bromine isotope analysis was used to corroborate the claim that the isolated strains were responsible for the degradation in the original enriched consortium, thus ensuring that the isolated four-strain microbial consortium is representative of the actual environmental enrichment.

Funder

Israel Science Foundation

United States Department of Agri-consortium

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference52 articles.

1. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes

2. Halogenated organic compounds-A global perspective;Haggblom,2003

3. Chemical Transformation of 3-Bromo-2,2-bis(bromomethyl)propanol under Basic Conditions

4. The Spatial Distribution of the Microbial Community in a Contaminated Aquitard below an Industrial Zone

5. Furniture Flame Retardancy Partnership: Environmental Profiles of Chemical Flame-Retardant Alternatives for Low-Density Polyurethane Foam. Chemical Hazard Review,2005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3