Linked Data Triples Enhance Document Relevance Classification

Author:

Nagumothu DineshORCID,Eklund Peter W.ORCID,Ofoghi BahadorrezaORCID,Bouadjenek Mohamed Reda

Abstract

Standardized approaches to relevance classification in information retrieval use generative statistical models to identify the presence or absence of certain topics that might make a document relevant to the searcher. These approaches have been used to better predict relevance on the basis of what the document is “about”, rather than a simple-minded analysis of the bag of words contained within the document. In more recent times, this idea has been extended by using pre-trained deep learning models and text representations, such as GloVe or BERT. These use an external corpus as a knowledge-base that conditions the model to help predict what a document is about. This paper adopts a hybrid approach that leverages the structure of knowledge embedded in a corpus. In particular, the paper reports on experiments where linked data triples (subject-predicate-object), constructed from natural language elements are derived from deep learning. These are evaluated as additional latent semantic features for a relevant document classifier in a customized news-feed website. The research is a synthesis of current thinking in deep learning models in NLP and information retrieval and the predicate structure used in semantic web research. Our experiments indicate that linked data triples increased the F-score of the baseline GloVe representations by 6% and show significant improvement over state-of-the art models, like BERT. The findings are tested and empirically validated on an experimental dataset and on two standardized pre-classified news sources, namely the Reuters and 20 News groups datasets.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference47 articles.

1. Predicting the Importance of Newsfeed Posts and Social Network Friends;Paek,2010

2. Automated Text Classification of News Articles: A Practical Guide

3. NLP in News Feedshttps://syncedreview.com/2019/01/12/nlp-in-news-feeds/

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3