Design, Simulation and Experimentation of an Axial Flow Sunflower-Threshing Machine with an Attached Screw Conveyor

Author:

Ali Khaled Abdeen MousORCID,Zong Wangyuan,Md-Tahir HafizORCID,Ma Lina,Yang Liu

Abstract

Sunflower threshing is one of the most interesting field processes for making the sunflower ready for seed handling, drying, cleaning and oil extraction. One of the biggest problems observed during the sunflower threshing process is the accumulation of threshed crop on the first third of the threshing roller and passing off some unthreshed parts of sunflower heads. To solve the aforementioned problem and optimize the efficiency of the sunflower threshing process, this research was focused on devising and testing a sunflower threshing machine with a close threshing box system equipped with a screw conveyor that evenly distributed the feedstock of sunflower heads on the entire length of the threshing roller. The machine was tested to assess the seed damage rate, unthreshed seed percentage, threshing efficiency, machine productivity, power requirements and specific energy consumption. The evaluation was done under different roller rotational speeds (150, 200, 250 and 300 rpm) and feeding rates (600, 700, 800 and 900 kg/h). The obtained results revealed that the threshing evaluation parameters were affected significantly by the roller rotational speed and feeding rate. The threshing efficiency was observed to rise with the rise in the roller rotational speed, and it also rose with the increasing feed rate up to 800 kg/h and then started to descend. The unthreshed seed percentage decreased with the increase in the roller rotational speed for all feed rates, and it decreased with the increasing feed rate up to 800 kg/h and then started to increase at the higher feed rates. The damaged seed percentage, power requirement and machine productivity increased with the increase of the roller speed and feed rate. The Buckingham π theorem was followed to find an equation to predict the threshing efficiency, resulting in an equation with an R2 value of 0.9309. With elimination of the blockage problem and better threshing efficiency, this machine could be a good choice for small- to medium-sized sunflower farms.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

1. Sunflower oil: Efficient oil source for human consumption;Khan;Emergent Life Sci. Res.,2015

2. Sunflower Genetics from Ancestors to Modern Hybrids—A Review

3. Food and Agricultural Organization http://www.fao.org/faostat/ar/#data/QC

4. Field Tests of an Axial Flow Rice Thresher for Sunflower Threshing;Peeneejdangang,1997

5. RNAM Test Codes & Procedures for Farm Machinery;Kibria,1995

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3