Abstract
This paper proposes a novel genetic algorithm (GA) approach that utilizes a multichromosome to solve the flexible job-shop scheduling problem (FJSP), which involves two kinds of decisions: machine selection and operation sequencing. Typically, the former is represented by a string of categorical values, whereas the latter forms a sequence of operations. Consequently, the chromosome of conventional GAs for solving FJSP consists of a categorical part and a sequential part. Since these two parts are different from each other, different kinds of genetic operators are required to solve the FJSP using conventional GAs. In contrast, this paper proposes a unified GA approach that enables the application of an identical crossover strategy in both the categorical and sequential parts. In order to implement the unified approach, the sequential part is evolved by applying a candidate order-based GA (COGA), which can use traditional crossover strategies such as one-point or two-point crossovers. Such crossover strategies can also be used to evolve the categorical part. Thus, we can handle the categorical and sequential parts in an identical manner if identical crossover points are used for both. In this study, the unified approach was used to extend the existing COGA to a unified COGA (u-COGA), which can be used to solve FJSPs. Numerical experiments reveal that the u-COGA is useful for solving FJSPs with complex structures.
Funder
National Research Foundation of Korea
Korea Institute for Advancement of Technology
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献