Abstract
The main protease (Mpro) of SARS-CoV-2 is a current target for the inhibition of viral replication. Through a combined Docking and Density Functional Theory (DFT) approach, we investigated in-silico the molecular mechanism by which ebselen (IUPAC: 2-phenyl-1,2-benzoselenazol-3-one), the most famous and pharmacologically active organoselenide, inhibits Mpro. For the first time, we report on a mechanistic investigation in an enzyme for the formation of the covalent -S-Se- bond between ebselen and a key enzymatic cysteine. The results highlight the strengths and weaknesses of ebselen and provide hints for a rational drug design of bioorganic selenium-based inhibitors.
Funder
Università degli Studi di Padova
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献