Simulation of Sowing Precision in Laboratory Conditions

Author:

Cujbescu Dan,Găgeanu Iuliana,Persu Cătălin,Matache MihaiORCID,Vlăduț Valentin,Voicea Iulian,Paraschiv Gigel,Biriș Sorin ȘtefanORCID,Ungureanu NicoletaORCID,Voicu Gheorghe,Ipate GeorgeORCID

Abstract

In agrotechnical practice, it was found that between qualitative indices, which express the sowing precision achieved by precision planters determined in the laboratory, and those determined under operating conditions, that there are certain differences, which are sometimes quite significant. The decrease in the value of the quality indices was manifested by the increase of the number of mistakes, either of the number of double planting holes (with at least two seeds), or of the number of missing planting holes. Both cases are unfavorable for the agricultural producer, generating production losses. This paper discusses the influence of the degree of soil grinding on sowing precision in operating conditions, by determining the spectrum of the vibrations induced in the mechanical structure of row units of a precision planter in contact with the soil of three different plots for three working speeds: 4, 6, and 8 km·h−1. Later, the vibrations were simulated under laboratory conditions, on the stand, by means of rubber hemispheres (with diameters between 30 and 100 mm, corresponding to soil fractions resulting from the determination of the degree of soil grinding) mounted on rubber bands, which actuated the seed meters, for testing under an accelerated regime, outside of the optimal agricultural periods (out of season: beginning mid-May until the end of March), in order to obtain the accuracy of the precision planters. It was found that the sowing precision determined in stationary conditions on the stand, and on a plot with an appropriate degree of seedbed preparation, decreased between 2.92% (at 4 km·h−1) and 6.67% (at 8 km·h−1). The main objective of the tests was to reduce labor costs, which was necessary for the staff involved for determining the qualitative indices of work in real field operating conditions, eliminating fuel consumption, while reducing the duration of testing dependent on meteorological factors (season, temperatures, and precipitation, etc.).

Funder

Universitatea Politehnica din București

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3