Abstract
This study focused on characteristic cases of recently tested real-scale RC framed wall infilled structures with innovative seismic protection through polyurethane joints (PUFJ) or polyurethane-impregnated fiber grids (FRPU). The frames revealed a highly ductile response while preventing infill collapse. Herein, suitable 3D pseudo-dynamic FE models were developed in order to reproduce the experimental results. The advanced Explicit Dynamics framework may help reveal the unique features of the considered interventions. Externally applied double-sided FRPU jackets on OrthoBlock infills may maintain an adequate bond with the surrounding RC frame as well as with the brick infill substrate at up to a 3.6% drift. In a weak four-column RC structure, the OrthoBlock infills with PUFJ seismic joints may increase the initial stiffness remarkably, increase the base shear by three times (compared with the bare structure) and maintain a high horizontal drift of 3.7%. After this phase, the structure may receive FRPU retrofitting, reveal the redistribution of stress over broad infill regions, including predamaged parts, and still develop a higher initial stiffness and base shear (compared with the bare RC). The realization of a desirable ductile behavior of infilled frames through PUFJ of only 20 mm thickness, as well as through FRPU jacketing, may remarkably broaden the alternatives in seismic protection against the collapse of structures.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献