Abstract
Bioremediation is a pollutant removal method that has had a great boom due to the diversity of agroindustrial waste that can be used for this purpose, and that has shown having great efficiency and profitability in the adsorption of heavy metals, such as Pb, Cu, and Co. Based on the above, the present work carried out kinetic and equilibrium studies of bioadsorption of Cr (III) using orange peel (OP) as adsorbent, previously treated with methanol, water, and a water–methanol mixture at different pH (0.91, 1.78 and 2.72), and at 30 °C, finding that the adsorption capacity at equilibrium increases with increasing pH, having a maximum of 55 mg g−1 at pH 2.72—under these conditions, lower adsorption energy was used to remove Cr (III). In addition, it was determined that there are no external mass transfer limitations. An isoelectric point analysis indicated that the adsorption is not carried out by electrostatic forces and a FTIR study of the functional groups of OP showed a decrease in the main functional groups (pectin, cellulose, and lignin, among others), which is directly related to the adsorption capacity of the bioadsorbent.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献