A Co-Rotational Meshfree Method for the Geometrically Nonlinear Analysis of Structures

Author:

Yeh Wen-ChengORCID

Abstract

This paper presents a co-rotational beam formulation, which is used for geometric nonlinear analysis with the differential reproducing kernel (DRK) approximation collocation method. The present formulation, based on the Timoshenko beam hypothesis, is capable of effectively solving geometrically nonlinear problems such as large deformation, postbuckling, lateral buckling, and snap-through problems. The kinematics have been constructed with the concept of co-rotational formulation adopted in the finite element method (FEM). A meshfree method based on the differential reproducing kernel (DRK) approximation collocation method, combined with the Newton–Raphson method, is employed to solve the strong forms of the geometrically nonlinear problems. The DRK method takes full advantage of the meshfree method. Moreover, only a scattered set of nodal points is necessary for the discretization. No elements or mesh connectivity data are required. Therefore, DRK will be able to completely circumvent the problems of mesh dependence and mesh distortion. The effectiveness of this study and its performance are shown through several numerical applications.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3