Abstract
The removal of chlorobenzene using a dielectric barrier discharge (DBD) reactor coupled with CuO/γ-Al2O3 catalysts was investigated in this paper. The coupling of CuO enhanced the chlorobenzene degradation and complete oxidation ability of the DBD reactor, especially under low voltage conditions. The characterization of catalyst was carried out to understand the interaction between catalyst and plasma discharge. The effects of flow rate and discharge power on the degradation of chlorobenzene and the interaction between these parameters were analyzed using the response surface model (RSM). The analysis of variance was applied to evaluate the significance of the independent variables and their interactions. The results show that the interactions between flow rate and discharge power are not negligible for the degradation of chlorobenzene. Moreover, based on the analysis of byproducts, 4-chlorophenol was discriminated as the important intermediate of chlorobenzene degradation, and the speculative decomposition mechanism of chlorobenzene is explored.
Funder
National Natural Science Foundation of China
Shanghai State-owned assets supervision and Administration Commission
Science and Technology Commission of Shanghai Municipality
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献