Study on Solar Radiation and the Extreme Thermal Effect on Concrete Box Girder Bridges

Author:

Lu Yao,Li Dejian,Wang Kai,Jia Shiwei

Abstract

Thermal effect is an essential factor in the durability and safety of concrete bridges. Therefore, this paper mainly studied the concrete bridge box girder temperature distribution and thermal effect under solar radiation and the thermal load. With a concrete rigid frame bridge as the engineering background, the temperature distribution of the box girder on a clear summer day was observed. Then, according to the solar physics and heat transfer theory, the different surfaces of the box girder cross-section are classified based on the heat transfer conditions, and the variation of solar radiation on different surfaces is investigated. The temperature field of the box girder is simulated by ANSYS. To obtain the extreme thermal condition, the meteorological data of the bridge site from 1990 to 2020 are collected. The data are fitted by generalized extreme value distribution to obtain the extreme temperature and average wind factors in the bridge design lifetime. Combined with the solar radiation, temperature, and wind factors, the extreme thermal condition of the concrete box girder is obtained. Lastly, the thermal effect of the box girder under the extreme condition is analyzed, and the thermal stress is compared with the allowable stress in the design code. The results show that the girder temperature difference is closely related to the solar radiation intensity and heat transfer conditions, and the solar radiation intensity is the more critical factor. The tensile stress caused by the extreme thermal load is more significant than the design strength value in the girder cross-section. The results also provide a method to obtain the extreme thermal condition and evaluate the impact of the thermal effect on concrete box girder bridges.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3