Categorization of Failures in Polymer Rapid Tools Used for Injection Molding

Author:

Bagalkot AnuragORCID,Pons Dirk,Symons Digby,Clucas DonORCID

Abstract

Background—Polymer rapid tooling (PRT) inserts for injection molding (IM) are a cost-effective method for prototyping and low-volume manufacturing. However, PRT inserts lack the robustness of steel inserts, leading to progressive deterioration and failure. This causes quality issues and reduced part numbers. Approach—Case studies were performed on PRT inserts, and different failures were observed over the life of the tool. Parts molded from the tool were examined to further understand the failures, and root causes were identified. Findings—Critical parameters affecting the tool life, and the effect of these parameters on different areas of tool are identified. A categorization of the different failure modes and the underlying mechanisms are presented. The main failure modes are: surface deterioration; surface scalding; avulsion; shear failure; bending failure; edge failure. The failure modes influence each other, and they may be connected in cascade sequences. Originality—The original contributions of this work are the identification of the failure modes and their relationships with the root causes. Suggestions are given for prolonging tool life via design practices and molding parameters.

Funder

Callaghan Innovation

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference30 articles.

1. 3D printing goes from prototyping to production;Weber;Assembly,2018

2. The Pursuit of New Product Development: The Business Development Process;Annacchino,2007

3. New Product Development and Delivery: Ensuring Successful Products through Integrated Process Management;Brethauer,2002

4. Product Design: Techniques in Reverse Engineering and New Product Development;Otto,2006

5. Injection Molding Handbook: The Complete Molding Operation Technology, Performance, Economics;Rosato,1995

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3