Functional Resonance Analysis in an Overtaking Situation in Road Traffic: Comparing the Performance Variability Mechanisms between Human and Automation

Author:

Grabbe NiklasORCID,Gales AlainORCID,Höcher Michael,Bengler KlausORCID

Abstract

Automated driving promises great possibilities in traffic safety advancement, frequently assuming that human error is the main cause of accidents, and promising a significant decrease in road accidents through automation. However, this assumption is too simplistic and does not consider potential side effects and adaptations in the socio-technical system that traffic represents. Thus, a differentiated analysis, including the understanding of road system mechanisms regarding accident development and accident avoidance, is required to avoid adverse automation surprises, which is currently lacking. This paper, therefore, argues in favour of Resilience Engineering using the functional resonance analysis method (FRAM) to reveal these mechanisms in an overtaking scenario on a rural road to compare the contributions between the human driver and potential automation, in order to derive system design recommendations. Finally, this serves to demonstrate how FRAM can be used for a systemic function allocation for the driving task between humans and automation. Thus, an in-depth FRAM model was developed for both agents based on document knowledge elicitation and observations and interviews in a driving simulator, which was validated by a focus group with peers. Further, the performance variabilities were identified by structured interviews with human drivers as well as automation experts and observations in the driving simulator. Then, the aggregation and propagation of variability were analysed focusing on the interaction and complexity in the system by a semi-quantitative approach combined with a Space-Time/Agency framework. Finally, design recommendations for managing performance variability were proposed in order to enhance system safety. The outcomes show that the current automation strategy should focus on adaptive automation based on a human-automation collaboration, rather than full automation. In conclusion, the FRAM analysis supports decision-makers in enhancing safety enriched by the identification of non-linear and complex risks.

Publisher

MDPI AG

Subject

Public Health, Environmental and Occupational Health,Safety Research,Safety, Risk, Reliability and Quality

Reference118 articles.

1. A comprehensive conceptual framework for road safety strategies

2. Global Status Report on Road Safety,2020

3. Taxonomy and Definitions for Terms Related to on-Road Motor Vehicle Automated driving Systems,2018

4. The Relative Frequency of Unsafe Driving Acts in Serious Injury Accidents;Hendricks,2001

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving safety in complex systems: A review of integration of functional resonance analysis method with semi‐quantitative and quantitative approaches;Human Factors and Ergonomics in Manufacturing & Service Industries;2024-09-02

2. Application of the FRAM Method to an Oil Production System;2023 International Conference on Decision Aid Sciences and Applications (DASA);2023-09-16

3. Assessing the reliability and validity of an FRAM model: the case of driving in an overtaking scenario;Cognition, Technology & Work;2022-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3