Numerical Calculation and Analysis of Water Dump Distribution Out of the Belly Tanks of Firefighting Helicopters

Author:

Zhou TejunORCID,Lu Jiazheng,Wu Chuanping,Lan Shilong

Abstract

Helicopters are more and more widely used for water dumping in fire extinguishing operations nowadays. Increasing attention is being paid to improving helicopter firefighting efficiency. Water distribution onto the ground from the helicopter tank is a key reference target to evaluate firefighting efficiency. Numerical simulations and calculations were carried out concerning water dumping out of the belly tank of a helicopter using the VOF (Volume of Fluent Model) model and mesh adaptation in ANSYS Fluent, and the effects of two parameters, the height of the tank above the ground and the wind speed, on the wake flow and water distribution were discussed. The results showed that for forward flight, the higher the forward flight speed, the less the average water depth on the ground. Similar results were obtained for flight height. The average water depth was one order of magnitude less than in the cases of the corresponding hovering helicopter for a given wind speed. As for hovering flight, the higher the wind speed, the less the average water depth on the ground. The simulation results were basically consistent with the conclusions of water dump tests of fire-fighting equipment carried by helicopters. For example, when the helicopter flew at a forward flight speed of 15 m/s and the tank bottom was 30 m above the ground, the area covered by the dumped water would be 337.5 m2, and the average water depth accumulated per square meter would be 0.3 cm. This result was close to the 0.34 cm obtained under Hayden Biggs’s test condition with a forward flight speed of 70 km/h and a height above the ground of 24 m.

Funder

the National Key Research and Development Plan

Publisher

MDPI AG

Subject

Public Health, Environmental and Occupational Health,Safety Research,Safety, Risk, Reliability and Quality

Reference25 articles.

1. Wildfire management in Canada: Review, challenges and opportunities

2. Rethinking resilience to wildfire

3. Wildfire and climate change adaptation of western North American forests: a case for intentional management

4. Analysis of helicopter activities in forest fire-fighting;Marchi;Croat. J. For. Eng. J. Theory Appl. For. Eng.,2014

5. The efficiency of aerial firefighting in varying flying conditions;Kal’avský;Proceedings of the 2019 International Conference on Military Technologies (ICMT),2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3