Application of Machine Learning for Insect Monitoring in Grain Facilities

Author:

Mendoza Querriel Arvy1ORCID,Pordesimo Lester2,Neilsen Mitchell1,Armstrong Paul2ORCID,Campbell James2,Mendoza Princess Tiffany3

Affiliation:

1. Department of Computer Science, Kansas State University, Manhattan, KS 66506, USA

2. USDA-ARS Center for Grain and Animal Health Research, Stored Product Insect and Engineering Research Unit (SPIERU), Manhattan, KS 66502, USA

3. Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA

Abstract

In this study, a basic insect detection system consisting of a manual-focus camera, a Jetson Nano—a low-cost, low-power single-board computer, and a trained deep learning model was developed. The model was validated through a live visual feed. Detecting, classifying, and monitoring insect pests in a grain storage or food facility in real time is vital to making insect control decisions. The camera captures the image of the insect and passes it to a Jetson Nano for processing. The Jetson Nano runs a trained deep-learning model to detect the presence and species of insects. With three different lighting situations: white LED light, yellow LED light, and no lighting condition, the detection results are displayed on a monitor. Validating using F1 scores and comparing the accuracy based on light sources, the system was tested with a variety of stored grain insect pests and was able to detect and classify adult cigarette beetles and warehouse beetles with acceptable accuracy. The results demonstrate that the system is an effective and affordable automated solution to insect detection. Such an automated insect detection system can help reduce pest control costs and save producers time and energy while safeguarding the quality of stored products.

Funder

USDA-ARS

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3