Numerical Simulation on Temperature and Moisture Fields Around Cooling Towers Used in Mine Ventilation System

Author:

Zhelnin MaximORCID,Kostina Anastasiia,Plekhov Oleg,Zaitsev Artem,Olkhovskiy Dmitriy

Abstract

For heat rejection, small air-cooling towers are widely used in mine ventilation systems. However, the thermal efficiency of the cooling towers can be significantly affected by their geometrical arrangement and crosswind conditions. In certain ambient conditions, heated air coming from an exit of one tower can flow to intakes of other towers, which leads to a reduction in the thermal efficiency of the entire ventilation system. The aim of this study was to investigate the influence of crosswind speed and tower spacing on the temperature and moisture content of intakes of cooling towers. For this purpose, a three-dimensional CFD model of the non-isothermal turbulent flow of moist air around cooling towers is proposed. The model is based on the Reynolds-averaged Navier–Stokes equations with a standard turbulence model which are supplemented by heat transfer and moisture transport equations. The investigation of the effects of the crosswind speed and the tower spacing was carried out for two cooling towers by multiparametric numerical simulation using the CFD model. It was shown that the upstream tower protects the downstream one from the effect of the crosswind. The increase in the crosswind speed causes a rise in temperature and moisture content at the intakes of the downstream tower. The increase in the tower spacing, in general, contributes to a decrease in air temperature at the intakes of the downstream tower. However, at low crosswind speed, the heat transfer at the intakes can rise with the tower spacing due to a reduction in the protection possibilities of the upstream tower. Results of the numerical simulation of airflow around three cooling towers indicated that the increase in the number of cooling towers contributes to a rise in temperature and moisture content at the intakes.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3