Numerical Simulation of Mixing Fluid with Ferrofluid in a Magnetic Field Using the Meshless SPH Method

Author:

Abdolahzadeh Mohsen,Tayebi Ali,Ahmadinejad MehrdadORCID,Šarler BožidarORCID

Abstract

In this study, a numerical investigation of the effect of different magnetic fields on ferrofluid-fluid mixing processes in a two-dimensional microchannel is performed An improved version of smoothed particle hydrodynamics, SPH, by shifting particle algorithm and dummy particle boundary condition, is implemented to solve numerical continuity, ferrohydrodynamics-based momentum and mass transfer equations. SPH is formulated through the irregular arrangement of the nodes where the fields are approximated using the fifth-order Wendland kernel function. After validating the computational approach, the influence of the number (from one to three) of parallel electrical wires positioned perpendicular to the microchannel on the mixing efficiency is studied for the first time. It has originally been found that the mixing efficiency highly non-linearly depends on the Reynolds number and the number of electrical wires. For Re ≤ 20 the mixing efficiency is almost the same for two and three electrical wires and about two times higher than one electrical wire. For Re ≥ 80, the mixing efficiency of three wires is much higher than one and two electrical wires. Optimum performance of the micromixer is achieved with three electrical wires, since the mixer performs well on a broader range of Re than the other two studied cases. The outcomes of this study, obtained by a meshless method, are important for the industrial design of micromixers.

Funder

Yasouj University and University of Ljubljana

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3