Abstract
The oscillation and collective behavior of convective flows is studied by a computational fluid dynamics approach. More specifically, the rising dynamics of heated fluid columns is simulated in gravitational field using a simplified 2D geometry. The numerical method uses the FEniCS package for solving the coupled Navier–Stokes and heat-diffusion equations. For the flow of a single heated fluid column, the effect of the inflow yield and the nozzle diameter is studied. In agreement with the experiments, for a constant nozzle diameter the oscillation frequency increases approximately linearly as a function of the the flow rate, while for a constant flow rate the frequency decreases as a power law with the increased nozzle diameter. For the collective behavior of two nearby flows, we find a counter-phase synchronization and a decreasing trend of the common oscillation frequency with the distance between the jets. These results are in agreement with the experiments, and our computational study also suggests that the phenomenon is present on largely different length-scales.
Funder
Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii
Collegium Talentum
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献