Computational Fluid Dynamics Approach for Oscillating and Interacting Convective Flows

Author:

Gergely Attila,Néda ZoltánORCID

Abstract

The oscillation and collective behavior of convective flows is studied by a computational fluid dynamics approach. More specifically, the rising dynamics of heated fluid columns is simulated in gravitational field using a simplified 2D geometry. The numerical method uses the FEniCS package for solving the coupled Navier–Stokes and heat-diffusion equations. For the flow of a single heated fluid column, the effect of the inflow yield and the nozzle diameter is studied. In agreement with the experiments, for a constant nozzle diameter the oscillation frequency increases approximately linearly as a function of the the flow rate, while for a constant flow rate the frequency decreases as a power law with the increased nozzle diameter. For the collective behavior of two nearby flows, we find a counter-phase synchronization and a decreasing trend of the common oscillation frequency with the distance between the jets. These results are in agreement with the experiments, and our computational study also suggests that the phenomenon is present on largely different length-scales.

Funder

Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii

Collegium Talentum

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3